Investigation on electronic and transport properties of two-dimensional Janus TiSiSeP2 monolayer using density functional theory
PDF (Vietnamese)

Keywords

Vật liệu Janus hai chiều
tính chất điện tử
độ linh động của điện tử
lý thuyết phiếm hàm mật độ Two-dimensional Janus materials
electronic properties
electron mobility
density functional theory

How to Cite

1.
Võ TTV, Nguyễn QC, Nguyễn NH. Investigation on electronic and transport properties of two-dimensional Janus TiSiSeP2 monolayer using density functional theory. hueuni-jns [Internet]. 2023Sep.30 [cited 2024Nov.23];132(1C):89-97. Available from: http://222.255.146.83/index.php/hujos-ns/article/view/7248

Abstract

In this paper, the electronic and transport properties of two-dimensional (2D) Janus TiSiSeP2 monolayer were studied using density functional theory (DFT). The results exhibited that the Janus TiSiSeP2 monolayer is structurally stable and can be experimentally synthesized. At the ground state, the Janus TiSiSeP2 monolayer is an indirect semiconductor with a band gap of 1.23 eV at the hybrid functional HSE06 level. The electronic characteristics of TiSiSeP2 depend highly on an applied strain, expecially the band gap. Besides, the transport characteristics of TiSiSeP2 are also systematically investigated in the present work. Our findings contributed to a better understanding of the physical properties of 2D Janus TiSiSeP2 monolayer.

https://doi.org/10.26459/hueunijns.v132i1C.7248
PDF (Vietnamese)

References

  1. Lugovskoi AV, Katsnelson MI, Rudenko AN. Strong electron-phonon coupling and its influence on the transport and optical properties of hole-doped single-layer InSe. Phys Rev Lett. 2019;123:176401.
  2. Poklonski NA, Vyrko SA, Siahlo AI, Poklonskaya ON, Ratkevich SV, Hieu NN, et al. Synergy of physical properties of low-dimensional carbon-based systems for nanoscale device design. Mater Res Express 2019;6(4):042002.
  3. Banszerus L, Schmitz LM, Engels S, Dauber J, Oellers M, Haupt F, et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci Adv. 2015;1(6):e1500222.
  4. Lu A-Y, Zhu H, Xiao J, Chuu C-P, Han Y, Chiu M-H, et al. Janus monolayers of transition metal dichalcogenides. Nat Nanotechnol. 2017;12:744.
  5. Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, et al. Janus Monolayer Transition-Metal Dichalcogenides. ACS Nano. 2017;11(8):8192.
  6. Vu TV, Vi VTT, Nguyen CV, Phuc HV, Hieu NN. Computational prediction of electronic and optical properties of Janus Ga2SeTe monolayer. J Phys D: Appl Phys. 2020;53(45):455302.
  7. Vu TV, Vi VTT, Phuc HV, Kartamyshev AI, Hieu NN. Oxygenation of Janus group III monochalcogenides: First-principles insights into GaInXO (X = S, Se, Te) monolayers. Phys Rev B. 2021;104:115410.
  8. Hong Y-L, Liu Z, Wang L, Zhou T, Ma W, Xu C, et al. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science. 2020;369:670-674.
  9. Wang L, Shi Y, Liu M, Zhang A, Hong Y-L, Li R, et al. Intercalated architecture of MA2Z4 family layered van der Waals materials with emerging topological, magnetic and superconducting properties. Nat Commun. 2021;12:2361.
  10. Sibatov RT, Meftakhutdinov RM, Kochaev AI. Asymmetric XMoSiN2 (X=S, Se, Te) monolayers as novel promising 2D materials for nanoelectronics and photovoltaics. Appl Surf Sci. 2022;585:152465.
  11. Kresse G, Furthmüller F. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169.
  12. Kresse G, and Furthmüller F. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6:15.
  13. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865.
  14. Heyd J, Scuseria GE. Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. J Chem Phys. 2004;121:1187-1192.
  15. Grimme S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J Comput Chem. 2006;27(15):1787-99.
  16. Bengtsson L. Dipole correction for surface supercell calculations. Phys Rev B. 1999;59:12301
  17. Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81: 511.
  18. Bardeen J, Shockley W. Deformation Potentials and Mobilities in Non-Polar Crystals. Phys Rev. 1950;80:72.
  19. Gao Z, He X, Li W, He Y, Xiong K. First principles prediction of two-dimensional Janus STiXY2 (X = Si, Ge; Y = N, P, As) materials. Dalton Trans. 2023;52:8322-8331.
  20. Vi VTT, Linh TPT, Ngyyen CQ, Hieu NN. Tunable electronic properties of novel 2D Janus MSiGeN4 (M = Ti, Zr, Hf) monolayers by strain and external electric field. Adv Theory Simul. 2022;5:2200499.
  21. Vi VTT, Hieu NN, Hoi BD, Binh NT, Vu TV. Modulation of electronic and optical properties of GaTe monolayer by biaxial strain and electric field. Superlattices Microstruct. 2020;140:106435.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2023 Array