Synthesis of Cr(III)-terephthalate metal-organic framework and its application to modify electrodes for electrochemical analysis of paracetamol
PDF (Vietnamese)

Keywords

metal-organic frameworks
MIL-101
electrochemical analysis
paracetamol vật liệu khung hữu cơ – kim loại
MIL-101
phân tích điện hoá
paracetamol

How to Cite

1.
Nguyễn NN, Hồ VT, Nguyen QM. Synthesis of Cr(III)-terephthalate metal-organic framework and its application to modify electrodes for electrochemical analysis of paracetamol. hueuni-jns [Internet]. 2025Mar.19 [cited 2025Apr.26];134(1A):103-12. Available from: http://222.255.146.83/index.php/hujos-ns/article/view/7612

Abstract

This study describes the synthesis of a metal-organic framework material MIL (Materials Institute Lavoisier) by using the hydrothermal method. The obtained materials were characterized with X-ray diffraction and scanning electron microscopy. The study shows that MIL-101 was formed at an early stage of synthesis (8 h), and then the phase transformation of the material occurred when the reaction time was extended to 48 h. The octahedral morphology of MIL-101 changed to a rod-like shape when the hydrothermal time increased. An electrode modified with MIL-101 exhibited more satisfied electrochemical properties towards paracetamol than other electrodes via cyclic voltammetry measurements. The differential pulse voltammetry measurements show a high linearity between peak currents and PCT concentration in the concentration range of 0.50–6.95 µM with a detection limit of 0.68 µM.

https://doi.org/10.26459/hueunijns.v134i1A.7612
PDF (Vietnamese)

References

  1. Fan Y, Liu J-H, Lu H-T, Zhang Q. Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2-graphene modified glassy carbon electrode. Colloids Surf B Biointerfaces. 2011;85(2):289-92.
  2. Dalmázio I, Alves TMA, Augusti R. An appraisal on the degradation of paracetamol by TiO2/UV system in aqueous medium: product identification by gas chromatography-mass spectrometry (GC-MS). Journal of the Brazilian Chemical Society. 2008;19.
  3. Cunha RR, Chaves SC, Ribeiro MMAC, Torres LMFC, Muñoz RAA, Dos Santos WTP, et al. Simultaneous determination of caffeine, paracetamol, and ibuprofen in pharmaceutical formulations by high-performance liquid chromatography with UV detection and by capillary electrophoresis with conductivity detection. J Sep Sci. 2015;38(10):1657-62.
  4. Vilchez JL, Blanc R, Avidad R, Navalón A. Spectrofluorimetric determination of paracetamol in pharmaceuticals and biological fluids. J Pharm Biomed Anal. 1995;13(9):1119-25.
  5. Medany SS, Hefnawy MA, Fadlallah SA, El-Sherif RM. Zinc oxide–chitosan matrix for efficient electrochemical sensing of acetaminophen. Chem Pap. 2024;78(5):3049-61.
  6. Cardoso AG, Viltres H, Ortega GA, Phung V, Grewal R, Mozaffari H, et al. Electrochemical sensing of analytes in saliva: Challenges, progress, and perspectives. TrAC Trends Anal Chem. 2023;160:116965.
  7. Guth U, Vonau W, Zosel J. Recent developments in electrochemical sensor application and technology — a review. Meas Sci Technol. 2009;20(4):42002.
  8. Li S, Dong K, Cai M, Li X, Chen X. A plasmonic S-scheme Au/MIL-101(Fe)/BiOBr photocatalyst for efficient synchronous decontamination of Cr(VI) and norfloxacin antibiotic. eScience. 2024;4(2):100208.
  9. Ren X, Wang C-C, Li Y, Wang P, Gao S. Defective SO3H-MIL-101(Cr) for capturing different cationic metal ions: Performances and mechanisms. J Hazard Mater. 2023;445:130552.
  10. Zhao T, Jeremias F, Boldog I, Nguyen B, Henninger SK, Janiak C. High-yield, fluoride-free and large-scale synthesis of MIL-101(Cr). Dalt Trans. 2015;44(38):16791-801.
  11. Wickenheisser M, Janiak C. Hierarchical embedding of micro-mesoporous MIL-101(Cr) in macroporous poly(2-hydroxyethyl methacrylate) high internal phase emulsions with monolithic shape for vapor adsorption applications. Microporous Mesoporous Mater. 2015;204:242-50.
  12. Cui L, Zhu B, Huang K, Gan Y, Li Y, Long J. Synthese, structure of three Zn-MOFs and potential sensor material for tetracycline antibiotic in water: {[Zn(bdc)(4,4′-bidpe)]·H2O}n. J Solid State Chem. 2020;290:121526.
  13. Salman F, Kazıcı HÇ, Gülcan M. Comparative of MIL101(Cr) and nano-MIL101(Cr) Electrode as an Electrochemical Hydrogen Peroxide Sensor. Electroanalysis [Internet]. 2022;34(10):1598-609.
  14. Zhang W, Zhang Z, Li Y, Chen J, Li X, Zhang Y, et al. Novel nanostructured MIL-101(Cr)/XC-72 modified electrode sensor: A highly sensitive and selective determination of chloramphenicol. Sensors Actuators B Chem. 2017;247:756-64.
  15. Li Q, Qu K. Electrochemical Impedimetric Platform Based on Con A@MIL-101 for Glycoprotein Detection. Langmuir. 2024;40(15):7974-81.
  16. Pan Y, Yuan B, Li Y, He D. Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal–organic framework. Chem Commun. 2010;46(13):2280-2.
  17. Kayal S, Sun B, Chakraborty A. Study of metal-organic framework MIL-101(Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks). Energy. 2015;91:772-81.
  18. Sochr J, Cinkova, Svorc. Electrochemical Behaviour Study and Sensitive Determination of Dopamine on Cathodically Pretreated Boron-doped Diamond Electrode. Austin J Anal Pharm Chem Austin J Anal Pharm Chem. 2014;1(1):1004-1.
  19. Soleymani J, Hasanzadeh M, Shadjou N, Khoubnasab Jafari M, Gharamaleki JV, Yadollahi M, et al. A new kinetic-mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode. Mater Sci Eng C Mater Biol Appl. 2016;61:638-50.
  20. Bard AJ, Faulkner LR. Fundamentals and applications: electrochemical methods. 2nd ed. New York: John Wiley & Sons, Ltd; 2001.
  21. Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem. 1979;101(1):19-28.
  22. Keyvanfard M, Shakeri R, Karimi-Maleh H, Alizad K. Highly selective and sensitive voltammetric sensor based on modified multiwall carbon nanotube paste electrode for simultaneous determination of ascorbic acid, acetaminophen and tryptophan. Mater Sci Eng C. 2013;33(2):811-6.
  23. Phong NH, Toan TTT, Tinh MX, Tuyen TN, Mau TX, Khieu DQ. Simultaneous Voltammetric Determination of Ascorbic Acid, Paracetamol, and Caffeine Using Electrochemically Reduced Graphene-Oxide-Modified Electrode. Valcarcel JI, editor. J Nanomater. 2018;2018:5348016.
  24. Duarte EH, Kubota LT, Tarley CRT. Carbon Nanotube Based Sensor for Simultaneous Determination of Acetaminophen and Ascorbic Acid Exploiting Multiple Response Optimization and Measures in the Presence of Surfactant. Electroanalysis. 2012; 24(12):2291-301.
  25. Alothman ZA, Bukhari N, Wabaidur SM, Haider S. Simultaneous electrochemical determination of dopamine and acetaminophen using multiwall carbon nanotubes modified glassy carbon electrode. Sensors Actuators B Chem. 2010;146(1):314-20.
  26. Fu L, Wang A, Lai G, Lin C-T, Yu J, Yu A, et al. A glassy carbon electrode modified with N-doped carbon dots for improved detection of hydrogen peroxide and paracetamol. Mikrochim Acta. 2018; 185(2):87.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2024 Array